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SUMMARY

A low-dimensional spectral method is used to solve the transient axisymmetric free surface �ow inside
thin cavities of arbitrary shape. The �ow �eld is obtained on the basis of the lubrication equations,
which are expanded in terms of orthonormal functions over the cavity gap. The formulation accounts
for nonlinearities stemming from inertia and front location. The work is of close relevance to the �lling
stage during die casting, and injection molding, or the �ow inside annular (extrusion) dies. Both �ows
under an imposed �ow rate, and an imposed pressure at the cavity entrance are examined. The in�uence
of inertia, aspect ratio, gravity, and wall geometry on the evolution of the front, �ow rate, and pressure
is assessed particularly in the early stage of �ow, when a temporal behavior of the ‘boundary-layer’ type
develops. The multiple-scale method is applied to obtain an approximate solution at small Reynolds
number, Re. Comparison with the exact (numerical) solution indicates a wide range of validity for the
multiple-scale approach, including the moderately small Re range. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The modeling and simulation of free surface cavity �ow have been the object of considerable
interest over the last two decades. The interest in this area of research activity is largely
due to the need for new computational algorithms that assist in the design and fabrication
of plastic and metal parts as encountered in the processing industry, particularly in injection
molding and die casting. Modeling of the �ow in these processes represents several major
challenges since it is inherently transient, non-isothermal, and includes a free surface moving
through cavities of highly irregular geometry. Despite the continuous development of new
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solution techniques, and the advent of powerful computational platforms, the simulation of
free surface �ow inside a cavity remains challenging. For transient free surface �ow, the
presence of geometrical nonlinearities, coupled to materials nonlinearities, such as inertia (die
casting) and non-Newtonian (injection molding) e�ects, make the moving-domain problem
di�cult to solve and understand.
Due to limited computational resources, the three-dimensional �ow problem has customarily

been simpli�ed to a two-dimensional problem, based on the observation of Hele-Shaw [1]. The
method is closely related to the lubrication or shallow-water theory for Newtonian �ow. In this
approach, the cavity is assumed to be thin, and out of plane �ows are neglected. Richardson
[2] was the �rst to propose this method for molding �ow. He examined Newtonian, isother-
mal �ow inside cavities of simple geometry. Three decades later, the lubrication assumption
remains the basis for the simulation of free surface �ow of thin �lms [3–5]. Whilst all of the
related mathematical models used in the literature stem from the common (and justi�able)
assumption of constant hydrostatic pressure distribution in the vertical direction, further re-
strictive assumptions, which are usually introduced without quantitative justi�cation, result in
the creation of mathematical forms with di�erent capabilities. In particular, (i) formulations
in which the vertical distribution of horizontal velocity components is variable and allows the
study of return �ows [6], and (ii) formulations in which only the mean horizontal velocities
are considered [7].
More generally, several numerical techniques have been developed for the solution of

moving boundary=initial value problems. These techniques may be classi�ed as Eulerian,
Lagrangian, and mixed Eulerian–Lagrangian [8]. In the Eulerian description of the �ow, the
grid points remain stationary or move in a predetermined manner [9–12]. In the Lagrangian
approach, the grid points move with local �uid particles [13; 14]. The free surface is sharply
de�ned and it is easy to impose the necessary boundary conditions. However, Lagrangian
methods require mesh re�nement or remeshing for large deformations of the free surface.
Hybrid methods have also been developed that combine the advantages of the Eulerian and
Lagrangian methods [15]. Generally, an adaptive Lagrangian approach becomes di�cult to
implement when a volume method such as the �nite-element method (FEM) is used. On the
other hand, the boundary-element method (BEM) is much easier to use along with adaptive
remeshing as the dimension of the problem is reduced by one. The advantages of the BEM
include: reduction of problem dimensionality, direct calculation of the interfacial velocity,
the ability to track large surface deformations, and the potential for easy incorporation of
interfacial tension as well as other surface e�ects [16–18]. However, there are a number of
simplifying assumptions that are customarily adopted for the BEM to become applicable. Non-
linear e�ects are di�cult to account for in a boundary-element approach despite the advent
of recent techniques to handle nonlinear and transient problems [19–22].
Regarding the simulation of free surface �ows with inertia, one is faced, on the one hand,

with the incapacity of conventional domain methods to deal with the issue of adaptive mesh-
ing for moving-boundary �ows and, on the other hand, with the failure of the BEM to deal
with nonlinearities stemming from inertia and upper-convected terms. The present paper ad-
dresses the solution of a large class of axisymmetric free-surface �ows with close relevance
to materials processing, in particular die casting and injection molding. The �ow problems
are typically concerned with the �lling stage inside a thin cavity. The lubrication assumption
is adopted to derive the relevant conservation equations, which are averaged over the cavity
gap. The �ow in the gap direction is not neglected. This study focuses on the early transients
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in free surface thin-cavity �ow. The rapid evolution of pressure and �ow rate in the initial
�ow stage are examined in detail.

2. PROBLEM FORMULATION, GENERAL EQUATIONS, BOUNDARY
AND INITIAL CONDITIONS

In this section, the lubrication equations, as well as the boundary and initial conditions, are
brie�y reviewed for transient axisymmetric free surface �ow inside a cavity of arbitrary shape
as depicted in Figure 1.

2.1. Governing equations

Consider an incompressible Newtonian viscous �uid of density �, and viscosity �. Surface
tension e�ect is assumed to be negligible. A section of the �ow is schematically illustrated in
Figure 1, where (R;�; X ) denote the cylindrical coordinates. The inner and outer cylindrical
rigid surfaces of the cavity are given by R1(X ) and R2(X ), respectively. The �ow may be
induced by the action of an imposed �ow rate, a driving pressure at the cavity entrance, and=or
gravity. The emphasis in this study, however, will be on the �ow induced by an imposed
�ow rate. The continuity equation reads:

UR; R +
1
R
UR +UX;X =0 (1)

where UR and UX are the radial and axial components of velocity. The relevant equations
from the conservation of momentum are

�(UR;T +URUR; R +UXUR; X )= −�; R + �
(
UR; RR +

UR; R
R

− UR
R2
+UR;XX

)
(2a)

�(UX;T +URUX;R +UXUX;X )= −�; X + �
(
UX;RR +

UX;R
R
+UX;XX

)
+ �g (2b)

Figure 1. Schematic view and notations used for typical moving-boundary �ow and
con�ning axisymmetric thin cavity.
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where a subscript after the comma denotes partial di�erentiation. T is the time, � is the
dynamic pressure, and g is the acceleration due to gravity, which is assumed to act in the
positive X direction.
The conservation equations above are now formulated in the narrow-gap limit. The dimen-

sionless variables are introduced as follows:

x=
X
R0
; z=

R− R0
D0

; t=
V
R0
T

ux=
Ux
V
; uz=

UR
V�
; p=

�2R0
�V

�
(3)

where R0 =R1(X =0) is the radius of the inner cylinder at the entrance, D0 =R2(X =0) −
R1(X =0) is the gap at the entrance, �=D0=R0 is the (typical) aspect ratio, and V is a
typical reference velocity, which is related to the applied �ow rate or the pressure at the
entrance to the cavity, depending on the case studied. In addition to �, there are two important
dimensionless groups, namely, the Reynolds number, Re, and the Froude number, Fr. The
parameters for the problem are explicitly written here:

Re=
�VR0
�
�2; �=

D0
R0
; Fr=

V√
gR0

(4)

In lubrication theory, Re is sometime referred to as the modi�ed Reynolds number [23]. In
dimensionless form, and if terms of O(�2) and higher are excluded, then Equations (1) and
(2) reduce to:

ux; x + �uz + uz; z = 0 (5)

Re(ux; t + uxux; x + uzux; z) = Re=Fr2 − p;x + ux; zz + �ux; z (6a)

p;z =0 (6b)

The term Re is not necessarily negligible, even for small �, since inertia e�ects may be large
enough for the modi�ed Reynolds number to be of order one. In this study, most numerical
results are reported for Re=O(1).

2.2. Boundary and initial conditions

Let the front be represented by x=F(z; t). The domain of computation is given by �(t)=
{(x; z) | x∈ [0; F(z; t)]; z ∈ [z1(x); z2(x)]}, where z1(x)= [R1(x)−R0]=D0 and z2(x)= [R2(x)−R0]=
D0. Note that if terms of O(�) are neglected, the formulation reduces to that corresponding
to two-dimensional �ow [23].
The boundary conditions for system (5)–(6) include the no-slip conditions at the inner and

outer cylinders, the exit conditions at x=0, and the dynamic and kinematic conditions at the
front. Thus, at the rigid surfaces:

ux(x; z= z1; t)= ux(x; z= z2; t)= uz(x; z= z1; t)= uz(x; z= z2; t)=0 (7)
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It is assumed that the �ow at the channel exit, at x=0, satis�es Poiseuille �ow, that is the
�ow inside an in�nite annular die, leading to the following expressions:

ux(x=0; z; t)=
6(2− �)Q(t)

2 + �
z
(
1− �

3
− z + �

3
z2
)
; uz(x=0; z; t)=0 (8)

where Q(t) is the imposed �ow rate. In the absence of surface tension, the traction must vanish
at the free surface. To leading order in �, the dynamic condition reduces to the vanishing of
the pressure:

p(x=F; z; t)=0 (9)

The kinematic condition used in this study is given by

ux(x=F; z; t)=
dF(z; t)
dt

(10)

As to the initial conditions, the �uid is assumed to be in general initially at rest (stress free),
occupying a �nite domain. However, there are situations when acceleration (inertia) vanishes
if the applied �ow rate is constant. In this case, the initial �ow at t=0 must immediately
adjust to the applied driving force.

3. SOLUTION PROCEDURE

The solution of the problem is obtained by expanding the �ow �eld over the cavity thick-
ness. The resulting equations for the expansion coe�cients are integrated between the cavity
entrance and front location along the axial direction. The problem then reduces to a nonlinear
coupled system that governs the evolution of the front location, L(t), �ow rate, Q(t), and
entrance pressure, P(t).

3.1. Elimination of the z dependence

System (5)–(10) is now reduced to a transient one-dimensional problem by expanding the
�ow variables in terms of appropriately chosen orthonormal modes in the z direction, and
applying the Galerkin projection method to generate the equations that govern the expansion
coe�cients. The procedure is closely related to that suggested by Zienkiewicz and Heinrich
in shallow-water theory [4]. In particular, it is assumed that the �ow in the axial direction, x,
can be represented by a contribution of some suitably selected orthonormal shape functions,
such that:

ux(x; z; t)=
M∑
i=1
Ui(x; t)�i(�) (11)

where M is the number of modes, �=(2z −�(x))=2	(x) is the normalized transverse co-
ordinate, Ui∈[1;M ] are the expansion coe�cients, and �i∈[1;M ] are the shape functions. Here
	(x)= z2(x)− z1(x) and �(x)= z2(x) + z1(x). In this case, �∈ [−1=2;+1=2]. The radial com-
ponent of the velocity, uz, is determined by inserting expression (11) into Equation (5) and
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integrating over the interval [−1=2; �], such that

uz(x; z; t) =−	
M∑
i=1
[(1− �	�)Fi + �	Gi]Ui; x

+
M∑
i=1

{
�; x
2
(1− �	�)�i + �		; x(�2�i − 2Gi)

+
[
	; x + �	

(
�; x
2

−	; x�
)]
(��i − Fi)

}
Ui (12)

where Fi(�)=
∫ �
−1=2 �i d�, and Gi(�)=

∫ �
−1=2 ��i d�.

The equations that govern the expansion coe�cients, Ui(x; t), are derived by using the
Galerkin projection method, which consists of inserting expressions (11) and (12) into Equa-
tion (6a), multiplying the equation by �i(�), and integrating over the interval � ∈ [−1=2;+1=2],
to give

Ui; t +
M∑
j=1

M∑
k=1

{
[〈�i(�j�k − Fj�′

k)〉+ �	〈�i(Gj − �Fj)�′
k〉]UjUk; x

+
[(
	; x

	
+ �
�; x
2

)
〈�iFj�′

k〉 − �	; x〈�i(�Fj − 2Gj)�′
k〉
]
UjUk

}

=
(
1
Fr2

− 1
Re
p;x

)
〈�i〉+ 1

	Re

M∑
j=1

[
�〈�i�′

j 〉+
1
	
〈�i�′′

j 〉
]
Uj (13)

where 〈 〉= ∫ 1=2−1=2 d�.

3.2. Elimination of the x dependence

The x dependence of the coe�cients Ui(x; t) is determined explicitly by integrating
Equation (5) in the z direction and applying the no-slip condition at z1(x) and z2(x). In
particular, one obtains the following equation that relates the coe�cients at an arbitrary axial
location to the coe�cients at the mean front position, L(t), which states that the �ow rate,
Q(t), is conserved at any location:

Q(t)=
M∑
i=1
�i(x)Ui(x; t)=

M∑
i=1
�i(L)UL

i (t) (14)

where UL
i (t)=Ui(x=L; t), and �i(x)=	(x)(1+

�
2�(x))〈�i〉+�	2(x)〈��i〉. A solution of Equa-

tion (14) that satis�es the problem for an arbitrary number of modes is given by

Ui(x; t)=
�i(L)
�i(x)

UL
i (t); i ∈ [1; M ] (15)

The x dependence of the radial velocity component ensues by substituting expression (15)
into (12). Note, however, that unlike ux(x; z; t); uz(x; z; t) is not separable in x and t.
Given the explicit dependence of Ui(x; t) on x, the equations that govern the time-dependent

coe�cients UL
i (t) are obtained by substituting expression (15) into Equation (13), integrating
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the latter over the interval x∈ [0; L], and using condition (9), thus leading to the following
system of ordinary di�erential equations:

Ai
dUL

i

dt
+ BiUL

i +
M∑
j=1

M∑
k=1
CijkUL

j U
L
k =

(
L
Fr2

− P
Re

)
〈�i〉+ 1

Re

M∑
j=1
DijUL

j (16)

where P(t)=p(x=0; t) is the pressure at the channel exit. The time dependent matrix coef-
�cients are given by:

Ai(t) = �i(L)
∫ L

0

dx
�i
; Bi(t)= − �i(L)

	(L)

(
M∑
j=1
�j(L)UL

j (t)

)∫ L

0

�′i dx
�2i

Cijk(t) = �j(L)�′k(L)
[
〈�i(�j�k − Fj�′

k)〉
∫ L

0

�′k
�j�2k

dx + �〈�i(Gj − �Fj)�′
k〉
∫ L

0

	�′k
�j�2k

dx
]

+ �j(L)�k(L)
[
〈�iFj�′

k〉
∫ L

0

(
	; x

	
+ �
�; x
2

)
dx
�j�k

− �〈�i(�Fj − 2Gj)�′
k〉
∫ L

0

	; x

�j�k
dx
]

Dij(t) = �j(L)
(
�〈�i�′

j 〉
∫ L

0

dx
	�j

+ 〈�i�′′
j 〉
∫ L

0

dx
	2�j

)
(17)

The expression of the mean front position, L(t), is obtained by averaging kinematic condi-
tion (10) over the cross section, leading to:

dL
dt
=

1
	(L)

∫ z2(L)

z1(L)
(1 + �z)ux(x=L; z; t) dz (18)

which is obviously related to the �ow rate:

dL
dt
=
Q(t)
	(L)

(18a)

and, consequently from Equation (14), to the velocity coe�cients:

dL
dt
=

1
	(L)

M∑
i=1
�i(L)UL

i (t) (18b)

The di�erential-algebraic system (14), (16) and (18) involves M + 2 equations, governing
M + 3 unknowns, namely, UL

1 ; : : : ; U
L
M ; Q; P and L. Obviously, one of these quantities will

have to be prescribed. There are two categories of problems envisaged generally in cavity
�ow: (i) the �ow that is induced at a prescribed �ow rate, Q(t), and (ii) the �ow that is due
to an imposed pressure, P(t), at the cavity entrance, x=0. In both cases, the initial conditions
are only imposed on the velocity and front position. In general,

UL
i (t=0)=U

L0
i ; L(t=0)=L0 (19)

where L0 is the mean front position of the initial �uid domain.
If P is prescribed, then Equations (16) and (18b) are solved subject to initial conditions

(19), and the �ow rate is then evaluated from expression (14). Although in this case the
problem reduces to the solution to a set of ordinary di�erential equations that is not di�cult
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to obtain, the prescription of pressure at the entrance is not generally the route adopted in
practice. In this study, the �ow rate will be assumed to be prescribed with time. The unknowns
in the problem are then the velocity coe�cients, the pressure at the entrance, and the mean
front position. This is the more di�cult problem since it involves the simultaneous solution
of a di�erential-algebraic system. However, the problem is reduced to a di�erential system
of equations by di�erentiating Equation (14) with respect to t, and substituting for dUL

i =dt
and dL=dt from Equations (16) and (18a), respectively, to obtain an expression for P in
terms of UL

i and L alone. This expression, in turn, is then substituted in Equations (16) to
eliminate P, leading to the system of di�erential equations for UL

i and L. The derivation is
algebraically involved and not illuminating. Only details with relevance to the special case
of a straight annular cavity will be given (see below). The resulting system is solved as an
initial-value problem subject to conditions (19), using a sixth-order Runge–Kutta integration
scheme (IMSL-DIVPRK). The integrals in expressions (17) were evaluated using a globally
adaptive integration scheme based on Gauss–Kronrod rules (IMSL-DQDAG). The tolerance
used for both schemes is 10−5. Note that in this case, L is decoupled from the velocity
coe�cients, and is obtained upon solving Equation (18a) separately.

3.3. Orthonormal functions

The choice of appropriate orthonormal functions constitutes a crucial step in any spectral
representation of the solution. These functions are usually chosen to be smooth, preferably
in�nitely di�erentiable, such as trigonometric or hyperbolic functions. In this study, the formu-
lation follows closely that of Zienkiewicz and Heinrich [4], which includes the depth-averaging
approach usually adopted in the literature on �lm �ow. In two-dimensional �ow, the axial ve-
locity component, ux, is assumed to be parabolic with respect to z; this assumption is based on
the solution to plane Poiseuille �ow. A similar approach may be adopted for the present prob-
lem, where a parabolic and a cubic shape function may be assumed for the two leading modes,
in reference to the Poiseuille �ow in an annular die. In general the modes are taken to satisfy:

�i

(
�= ± 1

2

)
=0; 〈�i�j〉= �ij; ∀i; j∈ [1; M ] (20)

where �ij is the Kronecker delta. The leading mode is then taken as

�1(�)=
√
30
(
�2 − 1

4

)
(21)

The second leading mode, �2(�), may be taken cubic or a general odd function in �, and must
be orthogonal to all other modes. There is a wide range of possibilities for the choice of the
higher order orthogonal modes. These modes, however, must be odd in order to ensure their
orthogonality to �1(�). In this study, odd Chandrasekhar functions will be used [24] for �i¿1.
These functions ensure the satisfaction of the no-slip boundary conditions at z= z1(x) and
z= z2(x), and have been widely used in linear and nonlinear problems, for their e�ectiveness
in solution representation and relative high rate of convergence. Thus,

�i¿1(�)=
sinh(ai�)
sinh(ai=2)

− sin(ai�)
sin(ai=2)

(22)

where the constants ai are the roots of coth(ai=2)− cot(ai=2)=0.
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It is argued that any arbitrary number of modes can be introduced, each satisfying the
no-slip conditions at the two rigid cylindrical surfaces, but reasonable radial distributions
can be obtained with M =2 or 3 for most practical applications [4]. Of course, the rate of
convergence will strongly depend on the choice of the modes. In addition, given the small
thickness of the �uid �lm, the �ow �eld is not expected to vary strongly with the height z;
a minimal number of modes is thus su�cient.

3.4. The special case of an annular cavity with straight walls

Considerable simpli�cation results for a �ow inside an annular die with straight walls. How-
ever, extensive results will also be given in the next section for a cavity with variable wall
shape. For a boundary with straight walls, z1(x)=0 and z2(x)=1, so that 	=�=1. In this
case, �i(x)= �i(L)= (1 + �=2)〈�i〉 + �〈��i〉. It is not di�cult to show, upon substituting ex-
pressions (11) and (12) into Equation (5), that uz(x; z; t)=0. The vanishing of uz leads in
turn, again from Equation (5), to ux; x(x; z; t)=0. Thus, ux is independent of x, and therefore
Ui(x; t)=UL

i (t). The nonlinear convective terms also vanish, and Equation (16) reduces to

dUL
i

dt
=
(
1
Fr2

− P
Re L

)
〈�i〉+ 1

Re

M∑
j=1
(�〈�i�′

j 〉+ 〈�i�′′
j 〉)UL

j (23)

In this case, P is given by

P(t)=
Re L
Fr2

− L
〈�1〉�1

[
Re
dQ
dt

−
M∑
i=1

M∑
j=1
�i(�〈�i�′

j 〉+ 〈�i�′′
j 〉)UL

j

]
(24)

which, upon substitution into Equation (23), and in combination with Equation (18), leads to
the desired dynamical system.

dUL
i

dt
=

〈�i〉
〈�1〉�1

dQ
dt
+
1
Re

M∑
j=1

M∑
k=1

(
�ik − 〈�i〉�k

〈�1〉�1

)
(�〈�k�′

j 〉+ 〈�k�′′
j 〉)UL

j (25)

In this case, the front position is dictated by Equation (18a), which reduces to

dL
dt
=Q(t) (26)

which is integrated once Q(t) is speci�ed.

4. NUMERICAL ASSESSMENT AND RESULTS

The general formulation above is now implemented for the problem of transient �ow of a
�uid penetrating a thin cavity as depicted in Figure 1. Both the �ow in an annular straight
channel, and a cavity with variable thickness will be considered. The �ow with small inertia
will be examined in some detail when a pressure is imposed for a cavity with straight walls.
The e�ect of wall geometry on the �ow inside a contracting, and an expanding walled cavity
will be examined. In all results reported, the initial domain is assumed to be straight with
L(t=0)=0. The �ow rate is imposed, so that Q(t)=1.
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Figure 2. In�uence of the aspect ratio on the evolution of the pressure, P(t), at the channel exit, for a
�ow inside a straight-walled cavity, for the range �∈ [0; 0:5], and M =4.

4.1. Flow inside a straight-walled annular channel

Consider the �ow induced by a constant �ow rate inside a cavity with straight walls. In this
case, the front moves at a constant speed, and the pressure at the channel exit, P(t), is the
main unknown in the problem. The �ow rate is taken (normalized) Q(t)=1. In this case, the
only quantity that depends on time is L, which is given from Equation (18):

L(t)= t + L0 (27)

It is clear from Equation (25) that, when the �ow rate is constant, the �uid cannot be assumed
to be at rest initially. Indeed, if UL0

i =0 for any i∈ [1; M ]; then the initial and subsequent
acceleration terms remain zero since the system of equations is homogeneous. In this case,
non-homogenous conditions must be given, which correspond to the immediate adjustment of
the �ow to the imposed �ow rate at t¿0. Thus,

UL0
i =

6(2− �)
2 + �

〈
z
(
1− �

3
− z + �

3
z2
)
�i
〉

(28)

where the �rst of expressions (8) is used. The in�uence of � is depicted from Figure 2,
where the evolution of the pressure is shown for �∈ [0; 0:5] and Re=1, over a period of
four time units. The �gure shows that the front evolves at a slower rate as the aspect ratio
increases. The two-dimensional behavior is recovered by the curve corresponding to �=0;
where the pressure increases at a rate equal to 12. It is interesting to observe from Figure
2 that although the rate dP=dt decreases monotonically as � increases, this decrease varies
asymptotically.
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Figure 3. Evolution of the velocity coe�cients for a �ow inside a
straight-walled cavity, Re=1 and �=0:5. Here M =6.

The convergence of the method is assessed by monitoring the magnitude of the leading
and higher order modes. Figure 3 displays the value of the velocity coe�cients for M =6,
as functions of the aspect ratio. Note that the velocity coe�cients remain essentially constant
with time, at least over the period considered. It is clear from the �gure that six modes are
entirely su�cient for the whole range of �, since only UL

1 and (to a much lesser extent)
UL
2 are essentially the non-zero modes. Note, however, the discrepancy between the leading
and higher order modes decreases signi�cantly as � increases. It will be seen below that
convergence depends on the aspect ratio and inertia but is generally achieved for M¡4.

4.2. In�uence of wall geometry

In this section, the e�ect of wall geometry will be examined for expanding and contracting
cavities. The inner cylinder is assumed to remain straight (parallel to the x axis). Thus,
z1(x)=0, and z2(x)=1+ axH (x), where a¿0 is the constant slope of the outer wall, and H
is the Heavyside function.
Consider �rst the �ow inside a contracting cavity (a¡0). The evolution of the pressure at

the channel exit, P(t), is typically illustrated in Figure 4 for Re=10; �=0:5, and a=−1=50.
Five di�erent truncation levels are used to assess the convergence of the results in this case,
corresponding to M ∈ [2; 10]. The �gure shows the typical exponential-like growth over 20
time units. The inset in the �gure shows the curves in the range t ∈ [16:9; 17], which clearly
indicates that convergence is essentially achieved for M¿2. The pressure tends to be generally
underestimated. Figure 5 shows the relative dominance of the two leading-order modes, UL

1
and (to a much lesser extent) UL

2 when six modes are included, particularly at the stage of
�ow. Observe the very slight dependence on time of UL

i¿1, despite the signi�cant deviation of
P(t) from linear growth.
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Figure 4. Convergence assessment for a �ow inside a contracting cavity of slope
a=−1=50, Re=10 and �=0:5. The �gure displays the evolution of P(t) for

M ∈ [2; 10]. Inset shows the range t ∈ [16:94; 17].

Figure 5. Evolution of the velocity coe�cients for a �ow inside a contracting cavity of slope
a=−1=50, Re=10, �=0:5 and M =6.

The in�uence of inertia on the contracting �ow is illustrated in Figure 6. The �gure shows
P(t) for the �ow inside a cavity with �=0:5 and a=−1=50, for the range Re∈ [1; 100]. The
results are based on M =6. As expected, the growth rate in pressure increases for a �ow with
higher inertia. The growth rate is found to increase essentially linearly with Re. The in�uence
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Figure 6. In�uence of inertia on the evolution of the pressure, P(t), at the channel exit, for a �ow
inside a contracting cavity, for the range Re∈ [1; 100], �=0:5, a=−1=50 and M =6.

Figure 7. In�uence of the aspect ratio on the evolution of the pressure, P(t), at the channel exit, for a
�ow inside a contracting cavity, for the range �∈ [0:1; 0:5], Re=10, a=−1=50 and M =6.

of aspect ratio is depicted from Figure 7, for Re=10; a=−1=50; M =6, and �∈ [0; 0:5].
Recall that �=0 corresponds to two-dimensional �ow. The pressure tends to build up more
strongly for the smaller gap cavity. Unlike the dependence on inertia, the rate of pressure
increase diminishes as the aspect ratio increases.
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Figure 8. Convergence assessment for a �ow inside an expanding cavity of slope a=1=20, Re=0:1 and
�=0:5. The �gure displays the evolution of P(t) for M ∈ [2; 10]. Inset shows the range t ∈ [16:94; 17].

Consider now the �ow inside an expanding cavity (a¿0). The evolution of the pressure at
the channel exit, P(t), is typically illustrated in Figure 8 for Re=0:1; �=0:5, and a=1=20.
Five di�erent truncation levels are used to assess the convergence of the results in this case,
corresponding to M ∈ [2; 10]. The �gure shows the typical logarithmic-like growth over 20
time units, which should be contrasted with Figure 4. The inset in the �gure shows the curves
in the range t ∈ [16:9; 17], indicating that convergence is essentially again achieved for M¿2.
The pressure is generally again underestimated. Figure 9 shows the relative dominance of the
two leading-order modes, UL

1 and U
L
2 when six modes are included. However, in contrast to

Figure 5, the higher order modes, particularly M¡5 remain relatively in�uential. In addition,
the time dependence of the velocity coe�cients is strong. Figure 9 indicates that while UL

1
decreases with time, the remaining modes tend to increase strongly initially, but eventually
reach the steady state.
The in�uence of inertia on the expanded �ow is illustrated in Figure 10. The �gure shows

P(t) for the �ow inside a cavity with �=0:1 and a=1=25, for the range Re∈ [1; 100]. The
results are based on M =6. In this case (compare with Figure 6), the growth rate in pressure
decreases for a �ow with higher inertia. The growth rate is found to decrease essentially
linearly with Re. At a critical Reynolds number, Re≈ 100, the pressure increases linearly with
time. The in�uence of aspect ratio is depicted from Figure 11, for Re=100; a=1=25; M =6,
and �∈ [0; 0:5]. The pressure tends to drop signi�cantly as � decreases.
Finally, the overall in�uence of the slope is depicted from Figure 12. The �gure displays

the evolution of the pressure for a �ow with Re=10 and �=0:5. The results are based on
M =6. Negative as well as positive slopes of the outer cylinder are considered, including
the case of a straight cylinder (slope=0), which gives a rate of increase equal to 12. The
most remarkable observation in the �gure is the di�erence in in�uence of the slope between
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Figure 9. Evolution of the velocity coe�cients for a �ow inside an expanding
cavity of slope a=1=25, Re=100, �=0:5 and M =6.

Figure 10. In�uence of inertia on the evolution of the pressure, P(t), at the channel exit, for a �ow
inside an expanding cavity, for the range Re∈ [1; 100], �=0:1, a=1=25 and M =6.

a contracting �ow and an expanding �ow. In the former case, a decrease in slope (from zero)
leads to a rapid increase in the evolution rate of the pressure; whereas for an expanding �ow,
the in�uence of the slope is relatively insigni�cant.
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Figure 11. In�uence of the aspect ratio on the evolution of the pressure, P(t), at the channel exit, for
a �ow inside an expanding cavity, for the range �∈ [0; 0:5], Re=100, a=−1=25 and M =6.

Figure 12. In�uence of the outer cylinder slope on the pressure, P(t), at the channel exit, for the
range a∈ [−1=25; 1=25] of the slope, �=0:5, Re=10 and M =6.

5. DISCUSSION AND CONCLUSION

The in�uence of inertia, aspect ratio, and cavity geometry are examined on the transient
axisymmetric free surface �ow inside a thin cavity. The general lubrication equations for de-
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Figure 13. Rate of mode convergence for �ow inside straight, contracting, and expanding cavities. The
magnitude of the velocity coe�cients is plotted against mode i for each case.

veloping free surface �ow between two co-axial cylinders of arbitrary shape are obtained in
the narrow-gap limit. The �ow �eld is expanded over the gap using the parabolic pro�le for
the leading mode and odd Chandrasekhar functions for the remaining modes. This constitutes
a complete set of orthonormal functions for the �ow representation. The equations that govern
the expansion coe�cients are then derived by using the Galerkin projection method. The prob-
lem is further reduced by using the conservation of mass to express the expansion coe�cients
at any axial location in terms of those at the front location. Finally, the momentum equation
is integrated between the annular channel exit (x=0) to the front location (x=L), yielding a
coupled di�erential–algebraic system in the velocity coe�cients, the �ow rate, the front loca-
tion, and the pressure at x=0. It is shown, under di�erent conditions of �ow, cavity geometry
and aspect ratio, that only two to three modes are needed for reasonable convergence to be
attained. Figure 13 summarizes the level of errors involved for each geometry considered.
The �gure also re�ects the fast rate of mode convergence for �ow inside straight, contracting,
and expanding cavities. The magnitude of the velocity coe�cients is plotted against mode i
for each case, which shows (roughly) that |Ui|=0:1i−3 for straight, 0:3i−3 for contracting,
and 0:1i−0:6 for expanding cavities.
Although some of the geometrical complexities are emphasized in this study, such as the

�ow inside expanding and contracting cavities, other more realistic con�gurations could also be
considered using the same methodology. Obviously, the current study is relevant to die �ow,
injection molding, and die casting [25; 26]. These processes involve usually non-isothermal
e�ect and solidi�cation that are not accounted for in the present work. Other e�ects such as
non-Newtonian e�ects and turbulence are also not addressed. It is, however, important to ob-
serve that the proposed formulation is inherently nonlinear, unlike existing approaches in thin
�lm �ow, and is therefore amenable to treat additional geometrical and material nonlinearities.
Some of these aspects have already been recently addressed by Khayat and coworkers [27–31].
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